

An Ultrafast Rechargeable Aluminum-Graphene Foam Battery

Chang-Chung Yang Deputy Technical Director and Principal investigator Green Energy & Environment Research Laboratories, ITRI

Sep. 22, 2016

ITRI: innovation-driven

Total Staff: 5,831

Ph.D.:	1,388
Master :	3,243
Bachelor :	1,200
Alumni :	23,745

Total Patents

24,188

Startups & Spinoffs(2015)

240

Industry Services(2015)

Provided Services : 18,351

Transferred Technologies : 642

Green Energy and Environment Research Laboratories (GEL)

Copyright 2016 ITRI 工業技術研究院

Battery : From Material to Prototyping

- Anode / Cathode synthesis
- micro-structure Design
- High V electrolyte
- · Capacity control

- Paste control
- Thermal/Electrical Design/ simulation
- · Safety control
- sealing

- Thermal /Electrical conduction
- Mechanical design/simulation
- SOC Information
- Cell Equalization
- Protection

Material Development

Cell Design

Battery Module Design

Cell Fab.

Recipe of Material System Electrode and Jelly Roll Conducting Mechanism Mathematical Model and Simulation

Performance Test

Capacity and Energy Density

Cycle Life and Storage/Shelf Life

High Current Capability

Impedance Analysis

Failure Mechanism

Specific Power

Mechanical Abuse Electrical Abuse Abnormal Environment Failure Mode Analysis

Module Test

Performance Safety Verification

ESS

Why Storage ?

National energy security for massive renewable energy

Enabling technology to improve intermittent power quality

Intermittent Power Improvement

Type I : Intermittent solar and ramping wind power quality Storage timing scales: frequency (< 1 sec.), voltage (< 1 min.), power (~min.) and energy (~hours)

Intermittency of solar generation

The rate of change for power ('ramp') \sim MW/min

Diurnal Load Shifting

Type II : Storage provides electricity when it is needed Renewable generation and electric vehicle Integration Grid / Load management and peak demand shaving

- Electric power demand
 - Load leveling

Peak shaving

Source: US DOE ARPA-E (2011), Japan NGK

Storage Cost Issues

Short-term \$0.1 /kWh/cycle \rightarrow Long-term \$0.02 /kWh/cycle

Source: ITRI, 2016; US DOE ARPA-E, 2010

Electrode Metals for Batteries

Abundance of Elements in Earth's Crust

Electrolytes: stability, hydrogen evolution

Cathode materials: re-chargeability, endured cyclic life

Abundance of elements in Earth's crust

Al-ion Battery Benchmark

Iron (Fe) Lithium (Li) 960 Ah/kg; 0.5 US\$/kWh 3862 Ah/kg: 35 US\$/k	Lithium (Li) 62 Ah/kg: 35 US\$/kWh		Voltage (V)	Cyclic Life	
5.6 %	Aluminum (Al) 2982 Ah/kg; 0.3 US\$/kWł	Aluminum (Al) 2 Ah/kg; 0.3 US\$/kWh	Allied Signal	1.7	100
		Sodium (Na) 1166 Ah/kg; 8 US\$/kWh	Cornell University	0.6	20
Zinc (Zn) 820 Ah/kg; 1.8 US\$/kWh 70 ppm	8.23 %	2.4 %	IICT*	1.1-0.2	40
Magnesium (Mg) 2205 Ah/kg; 1.1 US\$/kWh 2.3 %		Potassium (K) 686 Ah/kg; 7 USD/kWh 2.1 %	Sandia National Lab.	1.8-0.8	100
	686		ITRI/Stanford	2.0	7,500- 10,000

Ref: ITRI, 2016; Journal of The Electrochemical Society, 1988, 135(3): 650-654.; Chemical Communications 2011, 47(47): 12610-12612.; The Journal of Physical Chemistry C, 2014, 118(10): 5203-5215.; Journal of The Electrochemical Society, 2013, 160(10): A1781-A1784. Nature 520 (2015) 325. *IICT: Indian Institute of Chemical Technology.

- Performance of Al battery (1988-2014)
 - Capacity decay by 100 cycles/Low discharging plateaus (<1.5V)
- Why people cannot have good Al battery?
 - Cathode material disintegration: natural graphite^[1]
 - → Rapid capacity decay (85% over 100 cycles)^[4]
 - Inactive cathode: V₂O₅ (S.S.)^[2] or Conducting polymers^[3] or Fluorinated Graphite^[4] ^[1] ^(II) ^(II) ^(II) ^(II) ^(III) ⁽

 \rightarrow Low discharge voltage of 0.6 V^[2] or Capacitor behavior^[3,4]

Meng-Chang Lin, Ming Gong, Yingpeng Wu, Bingan Lu, et. al., Nature, 2015

THE SHORT ANSWER

The Aluminum-Ion Battery: How Big of a Breakthrough?

THE BATTERY BREAKTHROUGH WE'VE BEEN WAITING FOR?

Forbes -

Most Popular

4/07/2015 @ 2:49PM 56,072 views

Lists

Simple. Powerful. Affordable.

Get Vimeo PRO for your business videos

2 Free Issues of Forbes

Log in | Sign up | Connect (🗗 🔽 in)

vimeopro

New Posts

Stanford Researchers Created A Smartphone Battery That Charges In Only One Minute

Video

世界を変える?1分で充電できるアルミニウム イオン二次電池

世界を変える?1分で充電できるアルミニウムイオン二次電池

日刊工業新聞

ネイチャーも報じたスタンフォード大と台湾ITRIの技術

F	1 0	0	0	0	0
シェ7する	f いいね!	ジ ツイート	8+ 共有	B! ブックマーク	Pocket

辞书

) 海外テクノロジー最前線

テック最前線

2015年04月08日

HOME

Mechanism of Aluminum Batteries

Novel Cathode Material-1

- Pyrolytic graphite: a novel cathode material
 - No expansion was observed during cycling
 - High discharging voltage: 2.25-2.0V
 - High cycling stability: >200 cycles and no capacity decay
 - However, only 2C rate capability (66 mA g⁻¹) was achieved

Novel Cathode Material-2

- 3D graphene foam: a novel cathode material
 - High discharging voltage: 2.25-2.0V
 - Ultra-fast charge/discharge at 5000 mA/g (3000W/kg [75C])
 - High cycling stability: >7500 cycles and no capacity decay
 - 1 min fast charge and slow discharge

Charge-Discharge Mechanism

- Anode: Deposition and dissolution of Al
 - >99% Coulombic efficiency
- Cathode: Intercalation and deintercalation reactions
 - $AlCl_4^-$ and $Al_2Cl_7^-$ anions were involved ?

M.-C. Lin et al., Nature 520, 324–328 (16 April 2015) doi:10.1038/nature14340

Prototyping of Al Battery

Acknowledgement

 Many thanks to MOEA, ITRI and Stanford University for financial supports and technical discussions.

管技術研究院

 Valuable advising: Professor Hongjie Dai

HORIZON 2020 ALION Project Kick Off Meeting @ LEITAT June 19, 2015

High Specific Energy Aluminium-ion rechargable decentralised electricity generation sources (ALION)

The overall objective of the ALION project is to develop aluminium-ion battery technology for energy storage application in decentralised electricity generation sources. ALION pursues an integral approach comprising electroactive materials based on "rocking chair" mechanism, robust ionic liquid-based electrolytes as well as novel cell and battery concepts, finally resulting

in a technology with much lower cost, improved performance, safety and reliability with respect to current energy storage solutions (e.g. Pumped hydro storage, Compressed air energy storage, Li-ion battery, Redox Flow Battery...).

The project covers the whole value chain from materials and component manufacturers, battery assembler, until the technology validation in specific electric microgrid system including renewable energy source (i.e. mini wind turbine, photovoltaic system...). Thus, the final objective of this project is to obtain an Al-ion battery module validated in a relevant environment, with a specific energy of 400 W.h/kg, a voltage of 48V and a cycle life of 3000 cycles.

The Project is funded by European Commission with GA: 646286, led by LEITAT and involves 13 partners from all across Europe.

Why Partner With Taiwan

- Fully eligible to participate in Horizon 2020
- Bring funding from Taiwan
- Contributes unique expertise into the projects
- Access to markets and networks in Asia-Pacific

Taiwan's H2020 Partner Countries

Number of Projects

Find Partners in Taiwan

NCP Taiwan website: <u>https://www.ncp.tw/en/</u> Find Partners in Taiwan by H2020 Research Area: <u>https://www.ncp.tw/en/faq/</u>

National Contact Point.TW National Contact Point for EUs Framework Programmes for Research and Technical Deve 歐盟科研架構國家聯絡	hypment · Horizon 2020 读 點	文 ip
Welcome to NCP Taiwan	Find Partners in Taiwan by Research Area	
Horizon 2020	Index Environment & Climate Action (16) 🔻	
Taiwan Funding Programs	Agriculture & Forestry (4)	
Partnering With Taiwan	Dr. Bio-based Industries (7)	
Find Partners in Taiwan	Energy (17)	
Project List	Food & Healthy Diet (3)	
Horizon 2020 Useful Links	Dr. Health (13) ICT Research & Innovation (15)	
NCP Taiwan Past Events	Key Enabling Technologies (7) Dr. Baw Materials (2)	
Contact Us	Research Infracticutures (2)	
Visitors: 22,397	Dr. Social Sciences & Humanities (6)	
follow me: f 8	Dr. Space (1) Transport (1)	

INNOVATING A BETTER FUTURE

Thank You

Copyright 2016 ITRI 工業技術研究院